If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x-8x^2=8
We move all terms to the left:
18x-8x^2-(8)=0
a = -8; b = 18; c = -8;
Δ = b2-4ac
Δ = 182-4·(-8)·(-8)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{17}}{2*-8}=\frac{-18-2\sqrt{17}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{17}}{2*-8}=\frac{-18+2\sqrt{17}}{-16} $
| 1/5(20x-10)=4x+7 | | 13=5+3b=13 | | 0,2(20x-10)=4x+7 | | 2x2-6x-50=0 | | 2x2-2x=1 | | 17x^2-136x+204=0 | | 4(x-2)=-2x+16 | | −5r+8r+5= | | 3x2+5x+1=0 | | |2x−10|=−3x | | x=245/(x-1) | | 2x2-10x+7=0 | | 7(5+4x)-(3-x)=0 | | N^=18n+40 | | x^2+42x+6=0 | | 3x+7=−x−1 | | (7x-7)/(9x-8)=10 | | 1/x+4-3/x-3=11/4 | | 7y+9-0.5y-10=2y+0.25+6y-7 | | 0.25x2/5= | | 17x^2-68x+289=0 | | x/2+70=100 | | x(x-1)=245 | | 7x-4=8x-8 | | 2/3(9x+6)=6x+4 | | x2+8x-5=0 | | 10x-8/3-4x=6x+9 | | 7x+75=2x | | x/2+70=10 | | 7x+5-x+3=9x-15+3x+5 | | 6x-71=55 | | 2/5(x-3)+1=3 |